rotate3d()

Функция CSS rotate3d() трансформирует элемент без деформации, вращая его в трёхмерном пространстве вокруг зафиксированной оси. Её результатом является тип <transform-function> (en-US).

Интерактивный пример

In 3D space, rotations have three degrees of liberty, which together describe a single axis of rotation. The axis of rotation is defined by an [x, y, z] vector and pass by the origin (as defined by the transform-origin (en-US) property). If, as specified, the vector is not normalized (i.e., if the sum of the square of its three coordinates is not 1), the user agent will normalize it internally. A non-normalizable vector, such as the null vector, [0, 0, 0], will cause the rotation to be ignored, but without invaliding the whole CSS property.

Примечание: Unlike rotations in the 2D plane, the composition of 3D rotations is usually not commutative. In other words, the order in which the rotations are applied impacts the result.

Syntax

The amount of rotation created by rotate3d() is specified by three <number>s and one <angle>. The <number>s represent the x-, y-, and z-coordinates of the vector denoting the axis of rotation. The <angle> represents the angle of rotation; if positive, the movement will be clockwise; if negative, it will be counter-clockwise.

rotate3d(x, y, z, a)

Values

x

Is a <number> describing the x-coordinate of the vector denoting the axis of rotation which could between 0 and 1.

y

Is a <number> describing the y-coordinate of the vector denoting the axis of rotation which could between 0 and 1.

z

Is a <number> describing the z-coordinate of the vector denoting the axis of rotation which could between 0 and 1.

a

Is an <angle> representing the angle of the rotation. A positive angle denotes a clockwise rotation, a negative angle a counter-clockwise one.

Cartesian coordinates (en-US) on ℝ^2 This transformation applies to the 3D space and can't be represented on the plane.
Homogeneous coordinates on ℝℙ^2
Cartesian coordinates on ℝ^3 ( 1 + ( 1 cos ( a ) ) ( x 2 1 ) z sin ( a ) + x y ( 1 cos ( a ) ) y sin ( a ) + x z ( 1 cos ( a ) ) z sin ( a ) + x y ( 1 cos ( a ) ) 1 + ( 1 cos ( a ) ) ( y 2 1 ) x sin ( a ) + y z ( 1 cos ( a ) ) y sin ( a ) + x z ( 1 cos ( a ) ) x sin ( a ) + y z ( 1 cos ( a ) ) 1 + ( 1 cos ( a ) ) ( z 2 1 ) ) \begin{pmatrix}1 + (1 - \cos(a))(x^2 - 1) & z\cdot \sin(a) + xy(1 - \cos(a)) & -y\cdot \sin(a) + xz(1 - \cos(a))\\-z\cdot \sin(a) + xy(1 - \cos(a)) & 1 + (1 - \cos(a))(y^2 - 1) & x\cdot \sin(a) + yz(1 - \cos(a))\\y\cdot \sin(a) + xz(1 - \cos(a)) & -x\cdot \sin(a) + yz(1 - \cos(a)) & 1 + (1 - \cos(a))(z^2 - 1)\end{pmatrix}
Homogeneous coordinates on ℝℙ^3 ( 1 + ( 1 cos ( a ) ) ( x 2 1 ) z sin ( a ) + x y ( 1 cos ( a ) ) y sin ( a ) + x z ( 1 cos ( a ) ) 0 z sin ( a ) + x y ( 1 cos ( a ) ) 1 + ( 1 cos ( a ) ) ( y 2 1 ) x sin ( a ) + y z ( 1 cos ( a ) ) 0 y sin ( a ) + x z ( 1 cos ( a ) ) x sin ( a ) + y z ( 1 cos ( a ) ) 1 + ( 1 cos ( a ) ) ( z 2 1 ) 0 0 0 0 1 ) \begin{pmatrix}1 + (1 - \cos(a))(x^2 - 1) & z\cdot \sin(a) + xy(1 - \cos(a)) & -y\cdot \sin(a) + xz(1 - \cos(a)) & 0\\-z\cdot \sin(a) + xy(1 - \cos(a)) & 1 + (1 - \cos(a))(y^2 - 1) & x\cdot \sin(a) + yz(1 - \cos(a)) & 0\\y\cdot \sin(a) + xz(1 - \cos(a)) & -x\cdot \sin(a) + yz(1 - \cos(a)) & 1 + (1 - \cos(a))(z^2 - 1) & 0\\0 & 0 & 0 & 1\end{pmatrix}

Examples

Rotating on the y-axis

HTML

html
<div>Normal</div>
<div class="rotated">Rotated</div>

CSS

css
body {
  perspective: 800px;
}

div {
  width: 80px;
  height: 80px;
  background-color: skyblue;
}

.rotated {
  transform: rotate3d(0, 1, 0, 60deg);
  background-color: pink;
}

Result

Rotating on a custom axis

HTML

html
<div>Normal</div>
<div class="rotated">Rotated</div>

CSS

css
body {
  perspective: 800px;
}

div {
  width: 80px;
  height: 80px;
  background-color: skyblue;
}

.rotated {
  transform: rotate3d(1, 2, -1, 192deg);
  background-color: pink;
}

Result

Совместимость с браузерами

BCD tables only load in the browser

See also