The Math.hypot() function returns the square root of the sum of squares of its arguments, that is

Math.hypot(v1,v2,,vn)=i=1nvi2=v12+v22++vn2\mathtt{\operatorname{Math.hypot}(v_1, v_2, \dots, v_n)} = \sqrt{\sum_{i=1}^n v_i^2} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}

Syntax

Math.hypot([value1[, value2[, ...]]])

Parameters

value1, value2, ...
Numbers.

Return value

The square root of the sum of squares of the given arguments. If at least one of the arguments cannot be converted to a number, NaN is returned.

Description

Calculating the hypotenuse of a right triangle, or the magnitude of a complex number, uses the formula Math.sqrt(v1*v1 + v2*v2) where v1 and v2 are either the sides of the triangle, or the real and complex values.  For calculating distance in 2 or more dimensions, simply add in more squares inside the square root sign, like Math.sqrt(v1*v1 + v2*v2 + v3*v3 + v4*v4).  

This function makes it a little easier and faster, you just call Math.hypot(v1, v2) , or Math.hypot(v1, v2, v3, v4, ...) .  

It also avoids a problem if the magnitude of your numbers is huge.  The largest number you can represent in JS's double floats is Number.MAX_VALUE = 1.797...e+308 .  If your numbers are larger  than about 1e154, taking the square of them will result in Infinity, demolishing your results.  For example, Math.sqrt(1e200*1e200 + 1e200*1e200) = Infinity .  If you use hypot() instead, you get a good answer Math.hypot(1e200, 1e200) = 1.4142...e+200 .  This is also true with very small numbers.  Math.sqrt(1e-200*1e-200 + 1e-200*1e-200) = 0, but Math.hypot(1e-200, 1e-200) =1.4142...e-200, a good answer.

Because hypot() is a static method of Math, you always use it as Math.hypot(), rather than as a method of a Math object you created (Math is not a constructor).

If no arguments are given, the result is +0.

If at least one of the arguments cannot be converted to a number, the result is NaN.

With one argument, Math.hypot() returns the same as Math.abs().

Examples

Using Math.hypot()

Math.hypot(3, 4);        // 5
Math.hypot(3, 4, 5);     // 7.0710678118654755
Math.hypot();            // 0
Math.hypot(NaN);         // NaN
Math.hypot(3, 4, 'foo'); // NaN, +'foo' => NaN
Math.hypot(3, 4, '5');   // 7.0710678118654755, +'5' => 5
Math.hypot(-3);          // 3, the same as Math.abs(-3)

Polyfill

This can be emulated using the following function:

Math.hypot = Math.hypot || function() {
  var y = 0, i = arguments.length;
  while (i--) y += arguments[i] * arguments[i];
  return Math.sqrt(y);
};

A polyfill that avoids underflows and overflows:

Math.hypot = function (x, y) {
  // https://bugzilla.mozilla.org/show_bug.cgi?id=896264#c28
  var max = 0;
  var s = 0;
  for (var i = 0; i < arguments.length; i += 1) {
    var arg = Math.abs(Number(arguments[i]));
    if (arg > max) {
      s *= (max / arg) * (max / arg);
      max = arg;
    }
    s += arg === 0 && max === 0 ? 0 : (arg / max) * (arg / max);
  }
  return max === 1 / 0 ? 1 / 0 : max * Math.sqrt(s);
};

Specifications

Specification Status Comment
ECMAScript 2015 (6th Edition, ECMA-262)
The definition of 'Math.hypot' in that specification.
Standard Initial definition.
ECMAScript Latest Draft (ECMA-262)
The definition of 'Math.hypot' in that specification.
Draft  

Browser compatibility

Update compatibility data on GitHub
DesktopMobileServer
ChromeEdgeFirefoxInternet ExplorerOperaSafariAndroid webviewChrome for AndroidEdge MobileFirefox for AndroidOpera for AndroidiOS SafariSamsung InternetNode.js
Basic supportChrome Full support 38Edge Full support YesFirefox Full support 27IE No support NoOpera Full support 25Safari Full support 8WebView Android Full support YesChrome Android Full support YesEdge Mobile Full support YesFirefox Android Full support 27Opera Android Full support YesSafari iOS Full support 8Samsung Internet Android Full support Yesnodejs Full support 0.12

Legend

Full support  
Full support
No support  
No support

See also

Document Tags and Contributors

Last updated by: SphinxKnight,