注意:这个特性在2014年8月29日发布的Web Audio API规范中已经标记为不推荐,将很快会被Audio Workers代替.
ScriptProcessorNode
接口允许使用JavaScript生成、处理、分析音频. 它是一个 AudioNode
, 连接着两个缓冲区音频处理模块, 其中一个缓冲区包含输入音频数据,另外一个包含处理后的输出音频数据. 实现了 AudioProcessingEvent
接口的一个事件,每当输入缓冲区有新的数据时,事件将被发送到该对象,并且事件将在数据填充到输出缓冲区后结束.
输入和输出缓冲区大小在创建时定义, 当 AudioContext.createScriptProcessor()
方法被调用时 (都是由 AudioContext.createScriptProcessor()
的 bufferSize
参数定义). 缓冲区大小必须是在 256
到 16384
之间的 2 的次幂, 为 256
, 512
, 1024
, 2048
, 4096
, 8192
或者 16384
. Small numbers lower the latency, but large number may be necessary to avoid audio breakup and glitches.
If the buffer size is not defined, which is recommended, the browser will pick one that its heuristic deems appropriate.
Number of inputs | 1 |
---|---|
Number of outputs | 1 |
Channel count mode | "max" |
Channel count | 2 (not used in the default count mode) |
Channel interpretation | "speakers" |
属性
从上一级继承属性, AudioNode
.
ScriptProcessorNode.bufferSize
只读- 返回一个表示输入和输出缓冲区大小的整数. 它的值可以是在
256
–16384
之间的 2 的次幂.
事件句柄
ScriptProcessorNode.onaudioprocess
- Represents the
EventHandler
to be called.
方法
No specific methods; inherits methods from its parent, AudioNode
.
示例
The following example shows basic usage of a ScriptProcessorNode
to take a track loaded via AudioContext.decodeAudioData()
, process it, adding a bit of white noise to each audio sample of the input track (buffer) and play it through the AudioDestinationNode
. For each channel and each sample frame, the scriptNode.onaudioprocess
function takes the associated audioProcessingEvent
and uses it to loop through each channel of the input buffer, and each sample in each channel, and add a small amount of white noise, before setting that result to be the output sample in each case.
Note: For a full working example, see our script-processor-node github repo (also view the source code.)
var myScript = document.querySelector('script');
var myPre = document.querySelector('pre');
var playButton = document.querySelector('button');
// Create AudioContext and buffer source
var audioCtx = new AudioContext();
source = audioCtx.createBufferSource();
// Create a ScriptProcessorNode with a bufferSize of 4096 and a single input and output channel
var scriptNode = audioCtx.createScriptProcessor(4096, 1, 1);
console.log(scriptNode.bufferSize);
// load in an audio track via XHR and decodeAudioData
function getData() {
request = new XMLHttpRequest();
request.open('GET', 'viper.ogg', true);
request.responseType = 'arraybuffer';
request.onload = function() {
var audioData = request.response;
audioCtx.decodeAudioData(audioData, function(buffer) {
myBuffer = buffer;
source.buffer = myBuffer;
},
function(e){"Error with decoding audio data" + e.err});
}
request.send();
}
// Give the node a function to process audio events
scriptNode.onaudioprocess = function(audioProcessingEvent) {
// The input buffer is the song we loaded earlier
var inputBuffer = audioProcessingEvent.inputBuffer;
// The output buffer contains the samples that will be modified and played
var outputBuffer = audioProcessingEvent.outputBuffer;
// Loop through the output channels (in this case there is only one)
for (var channel = 0; channel < outputBuffer.numberOfChannels; channel++) {
var inputData = inputBuffer.getChannelData(channel);
var outputData = outputBuffer.getChannelData(channel);
// Loop through the 4096 samples
for (var sample = 0; sample < inputBuffer.length; sample++) {
// make output equal to the same as the input
outputData[sample] = inputData[sample];
// add noise to each output sample
outputData[sample] += ((Math.random() * 2) - 1) * 0.2;
}
}
}
getData();
// wire up play button
playButton.onclick = function() {
source.connect(scriptNode);
scriptNode.connect(audioCtx.destination);
source.start();
}
// When the buffer source stops playing, disconnect everything
source.onended = function() {
source.disconnect(scriptNode);
scriptNode.disconnect(audioCtx.destination);
}
Specifications
Specification | Status | Comment |
---|---|---|
Web Audio API ScriptProcessorNode |
Working Draft |