Using custom elements

One of the most key aspects of web components is the ability to create custom elements that nicely encapsulate your functionality on an HTML page, rather than having to make do with a tag soup that defines some custom functionality. This article goes through the basics of using custom elements.

Note: Custom elements are supported by default in Chrome and Opera. Firefox  is very close, available if you set the dom.webcomponents.enabled and dom.webcomponents.customelements.enabled preferences to true, with its implementation set to be enabled by default in version 60/61. Safari supports autonomous custom elements only so far, and Edge is working on an implementation as well.

High-level view

The controller of custom elements on a web document is the CustomElementRegistry object — this object allows you to register a custom element on the page, return information on what custom elements are registered, etc.

To register a custom element on the page, you use the CustomElementRegistry.define() method. This takes as its arguments:

  • A DOMString representing the name you are giving to the element. Note that custom element names require a dash to be used in them; they can't be single words.
  • A class object that defines the behaviour of the element.
  • Optionally, an options object containing an extends property, which specifies the built-in element your element inherits from if any.

So for example, our custom word-count element's definition looks like this:

customElements.define('word-count', WordCount, { extends: 'p' });

The element is called word-count, its class object is WordCount, and it extends the <p> element.

A custom element's class object is written using standard ES 2015 class syntax. For example, WordCount is structured like so:

class WordCount extends HTMLParagraphElement {
  constructor() {
    // Always call super first in constructor

    // Element functionality written in here


This is just a simple example, but there is more you can do here. It is possible to define specific life cycle callbacks inside the constructor, which run at specific points in the element's lifecycle. For example, connectedCallback is invoked when the custom element is first connected to the document's DOM, while attributeChangedCallback is invoked when one of the custom element's attributes is added, removed, or changed.

You'll learn more about these in our Using the lifecycle callbacks section below.

There are two types of custom elements:

  • Autonomous custom elements are standalone — they don't inherit from standard HTML elements. You use these on a page by literally writing them out as an HTML element. For example <popup-info>, or document.createElement("popup-info").
  • Customized built-in elements inherit from basic HTML elements. To create one of these you have to specify which element they extend (as hinted at in the examples above), and they are used by writing out the basic element but specifying the name of the custom elment in the is attribute (or property). For example <p is="word-count">, or document.createElement("p", { is: "word-count" }).

Working through some simple examples

At this point, let's go through some more simple examples to show you how custom elements are created in more detail.

Autonomous custom elements

Let's have a look at an autonomous custom element — <popup-info-box> (see a live example). This takes an image icon and a text string, and embeds the icon into the page. When the icon is focused, it displays the text in a pop up information box to provide further in-context information.

To begin with, in our JavaScript file we define a class called PopUpInfo, which extends HTMLElement. Autonomous custom elements nearly always extend HTMLElement.

class PopUpInfo extends HTMLElement {
  constructor() {
    // Always call super first in constructor

    // write element functionality in here


This contains the constructor definition for the class, which always starts by calling super() so that the correct prototype chain is estabished.

Inside the constructor we define all the functionality the element will be have when an instance of it is instantiated. In this case we attach a shadow root to the custom element, use some DOM manipulation to create the element's internal shadow DOM structure — which is then attached to the shadow root — and finally attach some CSS to the shadow root to style it.

// Create a shadow root
var shadow = this.attachShadow({mode: 'open'});

// Create spans
var wrapper = document.createElement('span');
var icon = document.createElement('span');
icon.setAttribute('tabindex', 0);
var info = document.createElement('span');

// Take attribute content and put it inside the info span
var text = this.getAttribute('text');
info.textContent = text;

// Insert icon
var imgUrl;
if(this.hasAttribute('img')) {
  imgUrl = this.getAttribute('img');
} else {
  imgUrl = 'img/default.png';
var img = document.createElement('img');
img.src = imgUrl;

// Create some CSS to apply to the shadow dom
var style = document.createElement('style');

style.textContent = '.wrapper {' +
// CSS truncated for brevity

// attach the created elements to the shadow dom


Finally, we register our custom element on the CustomElementRegistry using the define() method we mentioned earlier — in the parameters we specify the element name, and then the class name that defines its functionality:

customElements.define('popup-info', PopUpInfo);

It is now available to use on our page. Over in our HTML, we use it like so:

<popup-info img="img/alt.png" text="Your card validation code (CVC)
  is an extra security feature — it is the last 3 or 4 numbers on the
  back of your card.">

Note: You can see the full JavaScript source code here.

Customized built-in elements

Now let's have a look at another customized built in element example — expanding-list (see it live also). This turns any unordered list into an expanding/collapsing menu.

First of all, we define our element's class, in the same manner as before:

class ExpandingList extends HTMLUListElement {
  constructor() {
    // Always call super first in constructor

    // write element functionality in here


We will not explain the element functionality in any detail here, but you can discover how it works by checking out the source code. The only real difference here is that our element is extending the HTMLUListElement interface, and not HTMLElement. So it has all the characteristics of a <ul> element with the functionality we define built on top, rather than being a standalone element. This is what makes it a customized built-in, rather than an autonomous element.

Next, we register the element using the define() method as before, except that this time it also includes an options object that details what element our custom element inherits from:

customElements.define('expanding-list', ExpandingList, { extends: "ul" });

Using the built-in element in a web document also looks somewhat different:

<ul is="expanding-list">



You use a <ul> element as normal, but specify the name of the custom element inside the is attribute.

Note: Again, you can see the full JavaScript source code here.

Using the lifecycle callbacks

You can define several different callbacks inside a custom element's constructor, which fire at different points in the element's lifecycle:

  • connectedCallback: Invoked when the custom element is first connected to the document's DOM.
  • disconnectedCallback: Invoked when the custom element is disconnected from the document's DOM.
  • adoptedCallback: Invoked when the custom element is moved to a new document.
  • attributeChangedCallback: Invoked when one of the custom element's attributes is added, removed, or changed.

Let's look at an example of these in use. The code below is taken from our life-cycle-callbacks example (see it running live). This is a trivial example that simply generates a coloured square of a fixed size on the page. The custom element looks like this:

<custom-square l="100" c="red"></custom-square>

The class constructor is really simple — here we attach a shadow DOM to the element, then attach empty <div> and <style> elements to the shadow root:

var shadow = this.attachShadow({mode: 'open'});

var div = document.createElement('div');
var style = document.createElement('style');

The key function in this example is updateStyle() — this takes an element, gets its shadow root, finds its <style> element, and adds width, height, and background-color to the style.

function updateStyle(elem) {
  var shadow = elem.shadowRoot;
  var childNodes = shadow.childNodes;
  for(var i = 0; i < childNodes.length; i++) {
    if(childNodes[i].nodeName === 'STYLE') {
      childNodes[i].textContent = 'div {' +
                          ' width: ' + elem.getAttribute('l') + 'px;' +
                          ' height: ' + elem.getAttribute('l') + 'px;' +
                          ' background-color: ' + elem.getAttribute('c');

The actual updates are all handled by the life cycle callbacks, which are placed inside the constructor. The connectedCallback() runs when the element is added to the DOM — here we run the updateStyle() function to make sure the square is styled as defined in its attributes:

connectedCallback() {
  console.log('Custom square element added to page.');

the disconnectedCallback() and adoptedCallback() callbacks log simple messages to the console to inform us when the element is either removed from the DOM, or moved to a different page:

disconnectedCallback() {
  console.log('Custom square element removed from page.');

adoptedCallback() {
  console.log('Custom square element moved to new page.');

The attributeChangedCallback() callback is run whenever one of the element's attributes is changed in some way. As you can see from its properties, it is possible to act on attributes individually, looking at their name, and old and new attribute values. In this case however, we are just running the updateStyle() function again to make sure that the square's style is updated as per the new values:

attributeChangedCallback(name, oldValue, newValue) {
  console.log('Custom square element attributes changed.');

Note that to get the attributeChangedCallback() callback to fire when an attribute changes, you have to observe the attributes. This is done by calling the observedAttributes() getter inside the constructor, including inside it a return statement that returns an array containing the names of the attributes you want to observe:

static get observedAttributes() {return ['w', 'l']; }

This is placed right at the top of the constructor, in our example.

Note: Find the full JavaScript source here.

Document Tags and Contributors

 Contributors to this page: chrisdavidmills
 Last updated by: chrisdavidmills,