翻译正在进行中。

护用户数据是任何网站设计的重要组成部分。我们之前在文章Web安全中解释了一些更常见的安全威胁- 本文提供了Django的内置保护如何处理这些威胁的实际演示

Prerequisites: Read the Server-side progamming "Website security" topic. Complete the Django tutorial topics up to (and including) at least Django Tutorial Part 9: Working with forms.
Objective: To understand the main things you need to do (or not do) to secure your Django web application.

概覽

網站安全 主題提供一個概覽,說明有關伺服端設計的網站安全方法,以及一些你可能需要對抗的、更常見的威脅。本文中包含一個關鍵信息,即如果網頁應用信任來自瀏覽器的資料時,幾乎所有的攻擊方法都能成功。

Important: The single most important lesson you can learn about website security is to never trust data from the browser. This includes GET request data in URL parameters, POST data, HTTP headers and cookies, user-uploaded files, etc. Always check and sanitize all incoming data. Always assume the worst.

The good news for Django users is that many of the more common threats are handled by the framework! The Security in Django (Django docs) article explains Django's security features and how to secure a Django-powered website.

Common threats/protections

Rather than duplicate the Django documentation here, in this article we'll demonstrate just a few of the security features in the context of our Django LocalLibrary tutorial.

Cross site scripting (XSS)

XSS is a term used to describe a class of attacks that allow an attacker to inject client-side scripts through the website into the browsers of other users. This is usually achieved by storing malicious scripts in the database where they can be retrieved and displayed to other users, or by getting users to click a link that will cause the attacker’s JavaScript to be executed by the user’s browser.

Django's template system protects you against the majority of XSS attacks by escaping specific characters that are "dangerous" in HTML. We can demonstrate this by attempting to inject some JavaScript into our LocalLibrary website using the Create-author form we set up in Django Tutorial Part 9: Working with forms.

  1. Start the website using the development server (python3 manage.py runserver).
  2. Open the site in your local browser and login to your superuser account.
  3. Navigate to the author-creation page (which should be at URL: http://127.0.0.1:8000/catalog/author/create/).
  4. Enter names and date details for a new user, and then append the following text to the Last Name field:
    <script>alert('Test alert');</script>.
    Author Form XSS test

    Note: This is a harmless script that, if executed, will display an alert box in your browser. If the alert is displayed when you submit the record then the site is vulnerable to XSS threats.

  5. Press Submit to save the record.
  6. When you save the author it will be displayed as shown below. Because of the XSS protections the alert() should not be run. Instead the script is displayed as plain text.Author detail view XSS test

If you view the page HTML source code, you can see that the dangerous characters for the script tags have been turned into their harmless escape code equivalents (e.g. > is now &gt;)

<h1>Author: Boon&lt;script&gt;alert(&#39;Test alert&#39;);&lt;/script&gt;, David (Boonie) </h1>

Using Django templates protects you against the majority of XSS attacks. However it is possible to turn off this protection, and the protection isn't automatically applied to all tags that wouldn't normally be populated by user input (for example, the help_text in a form field is usually not user-supplied, so Django doesn't escape those values).

It is also possible for XSS attacks to originate from other untrusted source of data, such as cookies, Web services or uploaded files (whenever the data is not sufficiently sanitized before including in a page). If you're displaying data from these sources, then you may need to add your own sanitisation code.

Cross site request forgery (CSRF) protection

CSRF attacks allow a malicious user to execute actions using the credentials of another user without that user’s knowledge or consent. For example consider the case where we have a hacker who wants to create additional authors for our LocalLibrary.

Note: Obviously our hacker isn't in this for the money! A more ambitious hacker could use the same approach on other sites to perform much more harmful tasks (e.g. transfer money to their own accounts, etc.)

In order to do this, they might create an HTML file like the one below, which contains an author-creation form (like the one we used in the previous section) that is submitted as soon as the file is loaded. They would then send the file to all the Librarians and suggest that they open the file (it contains some harmless information, honest!). If the file is opened by any logged in librarian, then the form would be submitted with their credentials and a new author would be created.

<html>
<body onload='document.EvilForm.submit()'>

<form action="http://127.0.0.1:8000/catalog/author/create/" method="post" name='EvilForm'>
  <table>
    <tr><th><label for="id_first_name">First name:</label></th><td><input id="id_first_name" maxlength="100" name="first_name" type="text" value="Mad" required /></td></tr>
    <tr><th><label for="id_last_name">Last name:</label></th><td><input id="id_last_name" maxlength="100" name="last_name" type="text" value="Man" required /></td></tr>
    <tr><th><label for="id_date_of_birth">Date of birth:</label></th><td><input id="id_date_of_birth" name="date_of_birth" type="text" /></td></tr>
    <tr><th><label for="id_date_of_death">Died:</label></th><td><input id="id_date_of_death" name="date_of_death" type="text" value="12/10/2016" /></td></tr>
  </table>
  <input type="submit" value="Submit" />
</form>

</body>
</html>

Run the development web server, and log in with your superuser account. Copy the text above into a file and then open it in the browser. You should get a CSRF error, because Django has protection against this kind of thing!

The way the protection is enabled is that you include the {% csrf_token %} template tag in your form definition. This token is then rendered in your HTML as shown below, with a value that is specific to the user on the current browser.

<input type='hidden' name='csrfmiddlewaretoken' value='0QRWHnYVg776y2l66mcvZqp8alrv4lb8S8lZ4ZJUWGZFA5VHrVfL2mpH29YZ39PW' />

Django generates a user/browser specific key and will reject forms that do not contain the field, or that contain an incorrect field value for the user/browser.

To use this type of attack the hacker now has to discover and include the CSRF key for the specific target user. They also can't use the "scattergun" approach of sending a malicious file to all librarians and hoping that one of them will open it, since the CSRF key is browser specific.

Django's CSRF protection is turned on by default. You should always use the {% csrf_token %} template tag in your forms and use POST for requests that might change or add data to the database.

Other protections

Django also provides other forms of protection (most of which would be hard or not particularly useful to demonstrate):

SQL injection protection
SQL injection vulnerabilities enable malicious users to execute arbitrary SQL code on a database, allowing data to be accessed, modified, or deleted irrespective of the user's permissions. In almost every case you'll be accessing the database using Django’s querysets/models, so the resulting SQL will be properly escaped by the underlying database driver. If you do need to write raw queries or custom SQL then you'll need to explicitly think about preventing SQL injection.
Clickjacking protection
In this attack a malicious user hijacks clicks meant for a visible top level site and routes them to a hidden page beneath. This technique might be used, for example, to display a legitimate bank site but capture the login credentials in an invisible <iframe> controlled by the attacker. Django contains clickjacking protection in the form of the X-Frame-Options middleware which, in a supporting browser, can prevent a site from being rendered inside a frame.
Enforcing SSL/HTTPS
SSL/HTTPS can be enabled on the web server in order to encrypt all traffic between the site and browser, including authentication credentials that would otherwise be sent in plain text (enabling HTTPS is highly recommended). If HTTPS is enabled then Django provides a number of other protections you can use:
Host header validation
Use ALLOWED_HOSTS to only accept requests from trusted hosts.

There are many other protections, and caveats to the usage of the above mechanisms. While we hope that this has given you an overview of what Django offers, you should still read the Django security documentation.

總結

Django具備有效的保護措施,以對抗一些常見的威脅,包括 XSS 與 CSRF 攻擊。本文中,我們已經在本地圖書館站點,演示Django如何處理一些特定的攻擊。我們也提供了關於其它保護措施的簡短概述。

這僅僅是一個非常簡短的網絡安全突襲檢視。我們強烈建議你閱讀 Django中的安全 以獲得更深入的理解。

本Django教程的下一步,也是最後一步,是完成 評估任務。

See also

 

In this module

 

文档标签和贡献者

此页面的贡献者: edgar-chen, xixilog
最后编辑者: edgar-chen,