mozilla

# Revision 601189 of Proving the Pythagorean theorem

• Revision slug: Web/MathML/Examples/MathML_Pythagorean_Theorem
• Revision title: MathML Pythagorean Theorem
• Revision id: 601189
• Created:
• Creator: nielsdg
• Is current revision? No
• Comment
Tags:

## Revision Content

$a 2 + b 2 = c 2 We can prove the theorem algebraically by showing that the area of the big square equals the area of the inner square (hypotenuse squared) plus the area of the four triangles: ( a + b ) 2 = c2 + 4 ⋅ ( 1 2 ab ) a 2 + 2 a b + b 2 = c 2 + 2 a b a 2 + b 2 = c 2$

## Revision Source

```<p>
<math style="">

<mtable columnalign="left">
<mtr>
<mtd>
<!-- a² + b² = c² -->
<mrow>
<msup><mi> a </mi><mn>2</mn></msup>
<mo> + </mo>
<msup><mi> b </mi><mn>2</mn></msup>
<mo> = </mo>
<msup><mi> c </mi><mn>2</mn></msup>
</mrow>
</mtd>
</mtr>

<mtr>
<mtd>
<mtext mathcolor="black" mathsize="12pt">
We can prove the theorem algebraically by showing that the area of the big square equals the area of the inner square (hypotenuse squared) plus the area of the four triangles:
</mtext>
</mtd>
</mtr>

<mtr>
<mtd>
<mrow>
<!-- We want to square the whole expression between the braces so we need to wrap it -->
<msup>
<mrow>
<mo>(</mo>
<mi>a</mi> <mo> + </mo> <mi>b</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>

<mo> = </mo>

<msup><mi>c</mi><mn>2</mn></msup>
<mo> + </mo>
<mn> 4 </mn>
<mo> &sdot; </mo>
<!-- the area of the small triangles-->
<mo>(</mo>
<mfrac>
<mn> 1 </mn>
<mn> 2 </mn>
</mfrac>
<mi>a</mi><mi>b</mi>
<mo>)</mo>

</mrow>
</mtd>
</mtr>

<mtr>
<mtd>
<mrow>
<msup><mi> a </mi><mn>2</mn></msup>
<mo> + </mo>
<mn> 2 </mn><mi> a </mi><mi> b </mi>
<mo> + </mo>
<msup><mi> b </mi><mn>2</mn></msup>

<mo> = </mo>

<msup><mi> c </mi><mn>2</mn></msup>
<mo> + </mo>
<mn> 2 </mn><mi> a </mi><mi> b </mi>
</mrow>
</mtd>
</mtr>

<mtr>
<mtd>
<mrow>
<msup><mi> a </mi><mn>2</mn></msup>
<mo> + </mo>
<msup><mi> b </mi><mn>2</mn></msup>

<mo> = </mo>

<msup><mi> c </mi><mn>2</mn></msup>
</mrow>
</mtd>
</mtr>

</mtable>
[/itex]
</p>```