mozilla

# Revision 532079 of Proving the Pythagorean theorem

• Revision slug: Web/MathML/Examples/MathML_Pythagorean_Theorem
• Revision title: MathML Pythagorean Theorem
• Revision id: 532079
• Created:
• Creator: SphinxKnight
• Is current revision? No
• Comment
Tags:

## Revision Source

```<p><math style=""> <mtable columnalign="left"> <mtr> <mtd> <mrow> <mrow> <mrow> <mrow> <mspace depth="1ex" height="0.5ex" width="2.5ex"></mspace> <mtable columnalign="left"> <mtr> <mtd> <mrow> <mrow> <mrow> <mrow> <mspace depth="1ex" height="0.5ex" width="2.5ex"></mspace> <msup> <mi>a</mi> <mn>2</mn> </msup> </mrow> <mo> + </mo> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo> = </mo> <msup> <mi>c</mi> <mn>2</mn> </msup> </mrow> </mrow></mrow></mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mrow> <mspace depth="1ex" height="0.5ex" width="2.5ex"></mspace> <mrow><mtext mathcolor="black" mathsize="12pt"> We can prove the theorem algebraically by showing that the area of the big square equals the area<br />
of the inner square (hypotenuse squared) plus the area of the four triangles: </mtext> </mrow> </mrow> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mrow> <mrow> <mspace depth="1ex" height="0.5ex" width="2.5ex"></mspace> <mo>(</mo><mi>a</mi><mo> + </mo> <mi>b</mi><msup><mo>)</mo><mn>2</mn></msup><mo> = </mo> <msup><mi>c</mi><mn>2</mn></msup><mo> + </mo> <mn>4</mn><mo>(</mo><mfrac><mrow><mn>1</mn></mrow> <mn>2</mn></mfrac><mo>)</mo><mi>a</mi> <mi>b</mi> </mrow> </mrow> </mrow></mrow></mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mrow> <mrow> <mspace depth="1ex" height="0.5ex" width="2.5ex"></mspace> <msup><mi>a</mi><mn>2 </mn></msup><mo> + </mo> <mn>2</mn><mi>a</mi><mi>b</mi><mo> + </mo><msup><mi>b</mi><mn>2 </mn></msup> <mo> =</mo> <msup><mi>c</mi><mn>2</mn></msup><mo> + </mo> <mn>2</mn><mi>a<mi>b</mi> </mi></mrow> </mrow> </mrow></mrow></mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mrow> <mrow> <mspace depth="1ex" height="0.5ex" width="2.5ex"></mspace> <msup><mi>a</mi><mn>2 </mn></msup><mo> + </mo> <msup><mi>b</mi><mn>2</mn></msup> <mo> =</mo> <msup><mi>c</mi><mn>2</mn></msup> </mrow> </mrow> </mrow></mrow></mtd> </mtr> </mtable></mrow></mrow></mrow></mrow></mtd></mtr></mtable>[/itex]</p>```