# Various MathML Tests

## Overview of Presentation MathML elements

• Testing tensor indices <mmultiscripts>: ${}_{k}{}^{3}R_{i}^{1}{}_{j}{}^{2}$ ; This with <none/>, ${}_{i}A_{q}^{p}$
• A bit of calculus: ${\int }_{a}^{b}f\left(x\right)\mathrm{dx}\frac{\partial }{\partial x}F\left(x,y\right)+\frac{\partial }{\partial y}F\left(x,y\right)$
• Here is the alphabet with invisible portions wrapped by <mphantom> in between: $abc\phantom{defghij}klmno\phantom{pqrs}tuvwxyz$.
• Testing MathML <msub>: ${a}_{b}$; ${a}_{i}$; ${A}_{{I}_{k}}$
• Testing MathML <msup>: ${d}^{b}{2}^{{a}_{x}}{{2}^{2}}^{x}{\left(\frac{1}{2}\right)}^{{y}^{{a}_{x}}}$.
• Testing MathML <munder>, <mover>, and <munderover>: $\underset{\mathrm{un}}{\mathrm{abcd}}\stackrel{\mathrm{ov}}{\mathrm{abcd}}\underset{\mathrm{under}}{\overset{\mathrm{over}}{\mathrm{abcd}}}$.
• Testing MathML <msubsup>: ${a}_{p}^{q}{a}_{b+c}^{x}$.
• Testing MathML <mrow>: ${d}^{\left(\frac{a}{b}\right)}$
• ${x}^{2}+4*x+\frac{p}{q}=0$, with this <mfrac> hanging here $\frac{d*{T}^{\left(\frac{i+j}{n}\right)}+{p}_{y}*q}{{p}^{x}*{b}_{x}+\frac{a+c}{d}}$ in the middle of a lot of running text to try to explain what this means to those who care to read.
• Testing MathML <merror>, <mtext>: $\text{This is a text in mtext}\text{This is a text in merror}$
• Testing <maction>: Click to toggle between expressions, and watch the status line onmouseover/onmouseout:

$statusline#First Expression First Expression statusline#Second Expression Second Expression statusline#And so on... And so on..$

Click the expression below to see several definitions of pi:
$π = 3.14159265358... π = 2i ⁢ Log 1-i 1+i π = 2 . 2 2 . 2 2 + 2 . 2 2 + 2 + 2 ... π 4 = 1 2 + 12 2 + 32 2 + 52 2 + 72 2+...$

## Thomson scattering theory

$d 2 P d Ω s d ω s = r e 2 ∫ V < S i > d 3 r ∫ | e ^ . Π ↔ . e ^ | 2 κ 2 f δ ( k . v - ω ) d 3 v = r e 2 ∫ V < S i > d 3 r ∫ | 1 - ( 1 - s ^ . ı ^ ) ( 1 - β i ) ( 1 - β s ) β e 2 | 2 | 1 - β i 1 - β s | 2 × ( 1 - β 2 ) f δ ( k . v - ω ) d 3 v$

## Maxwell's Equations

$\left\{\begin{array}{rcl}\nabla ×\stackrel{\to }{\mathbf{B}}-\frac{1}{c}\frac{\partial \stackrel{\to }{\mathbf{E}}}{\partial t}& =& \frac{4\pi }{c}\stackrel{\to }{\mathbf{j}}\\ \nabla ċ\stackrel{\to }{\mathbf{E}}& =& 4\pi \rho \\ \nabla ×\stackrel{\to }{\mathbf{E}}+\frac{1}{c}\frac{\partial \stackrel{\to }{\mathbf{B}}}{\partial t}& =& \stackrel{\to }{0}\\ \nabla ċ\stackrel{\to }{\mathbf{B}}& =& 0\end{array}$

## Einstein's field equations

${\mathrm{R}}_{\mu \nu }-\frac{1}{2}{g}_{\mu \nu }\mathrm{R}=\frac{8\pi \mathrm{G}}{{c}^{4}}{\mathrm{T}}_{\mu \nu }$