Application security

  • Revision slug: Mozilla/Firefox_OS/Security/Application_security
  • Revision title: Application security
  • Revision id: 436025
  • Created:
  • Creator: ptheriault
  • Is current revision? No
  • Comment

Revision Content

{{draft}}

The key Web App security controls introduced by FirefoxOS are:

  • Web Apps are explicit installed and launched, rather than being casually navigated to in a browser. Apps must be installed prior to use, and security controls govern the update and removal of Apps to protect the user.
  • Access to new Web APIs is controlled by a permissions system, where an App must declare the permissions it intends to use prior to installation. In order to gain access to more powerful APIs, the Apps meet certain requirements, and be reviewed, approved and signed by a Marketplace.
  • Web Apps are sandboxed so they can only see their own resources (cookies, offline storage IndexedDB databases and so on). Even if two apps happen to both load a page with the same URL, these two pages are not considered same-origin as they are running inside seperate Apps.

App Types

FirefoxOS supports three types of Web Apps: "web", "privileged" and "certified". An App's type is declared in it's manifest, and determines the list of permissions it may request.

  • Web Apps: Most third-party apps will be "Web" apps, which is the default type, and doesn't grant the App any additional permissions besides those already exposed to the web. Web apps can be installed from any website, without any further verification. They can also be packaged but this does not allow any addition permissions.
  • Privileged Apps: These apps are allowed to request increased increased permissions, and as such privileged apps must be verified and signed by a Marketplace
  • Certified Apps: Certified apps can currently only be pre-installed on the device.

For further details of the three types, see the App Manifest documention.

App Delivery

Apps can be delivered by two different mechanisms in Firefox OS: hosted or packaged. Regular webs can be delivered via either mechanism, where as privileged and certified apps must be packaged.

Hosted apps

A hosted app consists solely of an application manifest file on the developer's web server. Often the manifest will also point to an appcache manifest which allows an app to be cashed for faster startup and to enable offline usage, but otherwise doesn't affect the app at all. From a security point of view, hosted apps work very much like normal websites. When a hosted app is loaded, the URL of the loaded pages are the normal URLs that those pages have on their web server. So to link to a specific page or resource in the app, the same URL is used as when linking to that page or URL on the website.

Packaged apps

A packaged app is an Open Web App that has all of its resources (HTML, CSS, JavaScript, app manifest, and so on) contained in a zip file, instead of having its resources on a Web server. For details of this format, see Packaged apps

App Installation

Apps are installed via the Apps Javascript API:

  • Hosted Apps: Hosted Apps are installed by calling navigator.mozApps.install(manifestURL), where manifestURL is a URL which specificies the location of the App. For further details, see Installing Apps.
  • Packaged Apps: Hosted Apps are installed by calling navigator.mozApps.installPackage(packageURL). For the Packaged Apps, the main application manifest is stored inside the package itself, so that it is signed. There is a second 'mini-manifest' which is used to start the install process. See Installing Packaged Apps and Packaged apps for more information.

In order to secure that an app really wants to be installed as a web app we have to ensure that it's not possible to trick a website into hosting an application manifest. This is done by requiring that the manifest is served with a specific mime-type, "application/x-web-app-manifest+json". This restriction is relaxed when the manifest app, and thus the app manifest, is same-origin with the page that requested the app to be installed.

Updates

The update process for Apps is described here:  Updating apps [en-US]

Permissions

Applications can be granted additional privileges on top of the ones granted to normal websites. By default an application has the same permissions as normal webpages. In order to get additional permissions, the first step is for the app to enumerate the additional permissions it wants in the application manifest.

Manifest Declaration

For each additional permission that an app wants, the manifest must enumerate that permission in their manifest along with a human-readable description of why the app wants access to that permission. For example, if an app wants to use the navigator.geolocation API, in must include the following in their manifest:

"permissions": {
  "geolocation":{ 
    "description": "Required for autocompletion in the share screen",  
  }
},

This allows the app to then prompt for the geolocation permission, in the same way that a web page normally would.  For further detail on manifests, see App manifest.

Note: Currently permissions usage intentions are not exposed to the user - see bug 823385.

Granting Permissions

When permissions are requested in the manifest, the permission is either set to 'allow' or 'prompt' depending on the permissions. Allow permissions are granted by virtue of being declared in the manifest with no further approval needed. For 'prompt' permissions, the user is prompted the first time the user access the related API, and has to make a choice prior to the API being granted. In general, Firefox OS only prompts users for permissions which have a privacy impact, and it is reasonable for the user to understand what they are being asked. For example, access to contacts is prompted, but access to make a raw TCP connection is implicitly granted since it is not reasonable for a user to understand the security implications of allowing this permissions. Use of 'allow' permissions is reviewed as part of Marketplace security review process to ensure users are protected.

Revoking Permissions

Users are allowed to change their mind about 'prompt' permissions at any time, and can revoke these permissions via the Firefox OS settings app. Allow permissions are not user configurable however.

Web App Sandbox

Data stored per app

Each application runs in as a separate sandbox, meaning that all data stored by an application is separate from all data stored by another application. This includes things like cookie data, localStorage data, indexedDB data and site permissions.

This means that if the user has two apps installed, App A and App B, these apps will have completely different set of cookies, different local data and different permission. This even applies if both of these apps open an <iframe> which point to the same origin. I.e. if both App A and App B open an <iframe> pointing to "http://www.mozilla.org", they will both render the website, however the website will be fetched and rendered with different cookies in the two apps.

A result of this is that if the user logs in to, for example, facebook while using App A, this in no way affects App Bs ability to interact with the users account on facebook. The login cookie that facebook sets when the user logs in using App A is only available in App A. If App B open an <iframe> to facebook, the cookie wouldn't be there and so when App B opens facebook, it receives the facebook login page rather than the users account.

Apps can't open each other

This means that apps can't open other apps by using iframes. If App A creates an iframe with the src set to the URL of App B, this won't actually open App B in the iframe. It will simply open the website located at that URL. It will not use any of App B's cookies and so it will behave no different than as if App B wasn't installed on the user's device.

This applies even for packaged apps (more about them below). If App A tries to open the packaged App B by using an <iframe> pointing to the app:// URL of App B, this will simply fail to load. If this results in a 404, or some other type of error is still to be determined, but it will definitely fail to load. And it will fail in the same way no matter if App B is installed on the user's device or not, as to make it impossible for App A to determine if App B is installed.

The same thing happens if the top-level frame of App A is navigated to a URL for App B. We always know for a given frame which app is opened in it, and so when attempting to load the App B URL in the App A frame, this will behave exactly like the two situations described above. I.e. in no way will App B's resources, like cookies or other local data, be used.

Motivation

There are both benefits and downsides to this approach. The downside is that if the user interacts with the same website through several apps, he/she will have to log in in every app. Likewise, if a website wants to store data locally, and the user interacts with this website in several apps, the data will end up getting duplicated in each app which could be a problem if it's a large amount of data.

The main benefit of this approach is that it's a more stable model. There is no way that several apps could interact with each other through a 3rd party website in unexpected ways such that installing an app causes another app to stop working. When an app is uninstalled there is no way that data for another app could be lost, or that another app will stop working due to functional dependence of the uninstalled app.

There are also large security benefits. A user can safely use his AwesomeSocial app to log in to facebook without having to worry that the SketchGame app can mount any types of attack for getting at the users facebook data by exploiting bugs or other shortcomings in the facebook website.

There are also good privacy benefits. The user can safely install the PoliticalPartyPlus app without having to worry that MegaCorpEmployeeApp will be able to detect that the app was installed or what data it has created.

Sandboxed Permissions

And just like website data is sandboxed per app, so are permission grants. If App A loads a page from http://maps.google.com and that page requests to use geolocation and the user says "yes, and remember this decision for all times", this only means that http://maps.google.com has access to geolocation within App A. If App B then opens http://maps.google.com, that page won't have access to geolocation unless the user grants that permission again.

And just like in the normal browser, permissions are separated by origin. This means that if App A is granted permission to use Geolocation, this does not mean that all origins running in App A have the permission to use Geolocation. If App A opens an <iframe> to http://maps.google.com, then http://maps.google.com still has to ask the user for permission before geolocation access is granted.

Browser API Sandbox

To additionally secure applications that open a large set of URLs, such as browsers, we have added a "browserContent flag". The browserContent flag allows each app to have not one, but two sandboxes, one for the app itself, and one for any "web content" that it opens. For example:

Say that the MyBrowser app is loaded from the https://mybrowser.com domain. This is the domain where the scripts and resources are loaded within. The scripts and resources belong to this domain.

Now, if a page in this app creates an <iframe mozbrowser> a different sandbox is created and used for this <iframe>, which is different from the sandbox used by the app - i.e. if this iframe is navigated to https://mybrowser.com, it will result in different cookies being used inside the <iframe mozbrowser>. Likewise, the contents inside the <iframe mozbrowser> will see different IndexedDB and localStorage databases from the ones opened by the app.

This also applies if the MyBrowser app wants to create integration with, for example, google maps, to implement location-based browsing. If the app opens an <iframe> to http://maps.google.com, that will open an iframe which will receive a set of cookies for the http://maps.google.com website. If the user then navigates inside web content area, i.e. inside the <iframe mozbrowser>, to http://maps.google.com, this will use different cookies and different permissions than the top level app.

Another example where this is useful is in a Yelp-like app. Yelp has the ability to visit a restaurant's website directly in the app. By using <iframe mozbrowser> to open the restaurant website, the Yelp app ensures that the restaurant website can't contain an <iframe> pointing back to Yelp's app (which points to http://yelp.com). If it does, the website will only receive the Yelp website, rather than the Yelp app. So there is no way that the restaurant website can mount an attack against the app since the contained Yelp website won't share any permissions or data with the Yelp app.

App Security Summary

The table below summarizes the different types of FirefoxOS Apps, describes the format, installation and updates process for Open Web Apps running on Firefox OS.

Web App Types
Type Delivery Permission Model Installation Updates
Web Hosted or Packaged Less sensitive permissions which are not dangerous to expose to unvalidated web content Installed from anywhere Can be updated transparent to user or explicitly via a marketplace, depending on where the App was installed from, and the delivery mechanism.
Privileged Packaged & Signed Privileged APIs which require validation and authentication of the App Installed from a trusted marketplace Updated via a trusted marketplace, user prompted to approve download and installation of updates.
Certified Packaged Powerful and dangerous APIs which are not available to Third-Party Apps. Pre-installed on the device Updated only as part of system level updates.

Note: For version 1.0 of Firefox OS, although web apps can be installed from any website/marketplace, privileged apps can only be installed from the Mozilla Marketplace, as support for multiple trusted marketplaces is not yet complete.

Revision Source

<div>
  {{draft}}</div>
<p>The key Web App security controls introduced by FirefoxOS are:</p>
<ul>
  <li>Web Apps are explicit installed and launched, rather than being casually navigated to in a browser. Apps must be installed prior to use, and security controls govern the update and removal of Apps to protect the user.</li>
  <li>Access to new Web APIs is controlled by a permissions system, where an App must declare the permissions it intends to use prior to installation. In order to gain access to more powerful APIs, the Apps meet certain requirements, and be reviewed, approved and signed by a Marketplace.</li>
  <li>Web Apps are sandboxed so they can only see their own resources (cookies, offline storage IndexedDB databases and so on). Even if two apps happen to both load a page with the same URL, these two pages are not considered same-origin as they are running inside seperate Apps.</li>
</ul>
<h3 id="App_Types">App Types</h3>
<p>FirefoxOS supports three types of Web Apps: "<strong>web</strong>", "<strong>privileged</strong>" and "<strong>certified</strong>". An App's type is declared in it's <a href="/en-US/docs/Apps/Manifest" title="/en-US/docs/Apps/Manifest">manifest</a>, and determines the list of permissions it may request.</p>
<ul>
  <li><strong>Web Apps:</strong> Most third-party apps will be "Web" apps, which is the default type, and doesn't grant the App any additional permissions besides those already exposed to the web. Web apps can be installed from any website, without any further verification. They can also be <a href="/en-US/docs/Web/Apps/Packaged_apps" title="/en-US/docs/Web/Apps/Packaged_apps">packaged</a> but this does not allow any addition permissions.</li>
  <li><strong>Privileged Apps</strong>: These apps are allowed to request increased increased permissions, and as such <em>privileged</em> apps must be verified and signed by a Marketplace</li>
  <li><strong>Certified Apps: </strong>Certified apps can currently only be pre-installed on the device.</li>
</ul>
<p>For further details of the three types, see the <a href="/en-US/docs/Apps/Manifest#type" title="/en-US/docs/Apps/Manifest#type">App Manifest</a> documention.</p>
<h3 id="App_Delivery">App Delivery</h3>
<p>Apps can be delivered by two different mechanisms in Firefox OS: hosted or packaged. Regular webs can be delivered via either mechanism, where as privileged and certified apps must be packaged.</p>
<h4 id="Hosted_apps_"><span class="mw-headline" id="Hosted_apps">Hosted apps </span></h4>
<p>A hosted app consists solely of an <a class="external text" href="/en-US/docs/Apps/Manifest" rel="nofollow">application manifest</a> file on the developer's web server. Often the manifest will also point to an appcache manifest which allows an app to be cashed for faster startup and to enable offline usage, but otherwise doesn't affect the app at all. From a security point of view, hosted apps work very much like normal websites. When a hosted app is loaded, the URL of the loaded pages are the normal URLs that those pages have on their web server. So to link to a specific page or resource in the app, the same URL is used as when linking to that page or URL on the website.</p>
<h4 id="Packaged_apps"><span class="mw-headline" id="Packaged_apps">Packaged apps</span></h4>
<p><strong>A packaged app</strong> is an Open Web App that has all of its resources (HTML, CSS, JavaScript, app manifest, and so on) contained in a zip file, instead of having its resources on a Web server. For details of this format, see<a href="/en-US/docs/Apps/Packaged_apps" title="Apps/Packaged_apps"> Packaged apps</a>.&nbsp;</p>
<h3 id="App_Installation"><strong>App Installation</strong></h3>
<p>Apps are installed via the <a href="/en-US/docs/JavaScript_API" title="/en-US/docs/JavaScript_API">Apps Javascript API</a>:</p>
<ul>
  <li>Hosted Apps: Hosted Apps are installed by calling <code>navigator.mozApps.<a href="/en-US/docs/Web/API/Apps.install" title="/en-US/docs/Web/API/Apps.install">install</a>(manifestURL)</code>, where manifestURL is a URL which specificies the location of the App. For further details, see <a href="/en-US/docs/DOM/Apps.install">Installing Apps</a>.</li>
  <li>Packaged Apps: Hosted Apps are installed by calling <code>navigator.mozApps.<a href="/en-US/docs/Web/API/Apps.installPackage" title="/en-US/docs/Web/API/Apps.installPackage">installPackage</a>(packageURL)</code>. For the Packaged Apps, the main application manifest is stored inside the package itself, so that it is signed. There is a second 'mini-manifest' which is used to start the install process. See <a href="/en-US/docs/DOM/Apps.installPackage">Installing Packaged Apps</a> and<a href="/en-US/docs/Apps/Packaged_apps" title="Apps/Packaged_apps"> Packaged apps</a> for more information.</li>
</ul>
<p>In order to secure that an app really wants to be installed as a web app we have to ensure that it's not possible to trick a website into hosting an application manifest. This is done by requiring that the manifest is served with a specific mime-type, "application/x-web-app-manifest+json". This restriction is relaxed when the manifest app, and thus the app manifest, is same-origin with the page that requested the app to be installed.</p>
<h3 id="Updates"><span class="mw-headline" id="Updates">Updates</span></h3>
<p>The update process for Apps is described here:&nbsp; <a href="/en-US/docs/Apps/Updating_apps" title="Apps/Updating_apps">Updating apps [en-US]</a></p>
<h2 id="Permissions">Permissions</h2>
<p>Applications can be granted additional privileges on top of the ones granted to normal websites. By default an application has the same permissions as normal webpages. In order to get additional permissions, the first step is for the app to enumerate the additional permissions it wants in the application manifest.</p>
<h3 id="Manifest_Declaration">Manifest Declaration</h3>
<p>For each additional permission that an app wants, the manifest must enumerate that permission in their manifest along with a human-readable description of why the app wants access to that permission. For example, if an app wants to use the <a href="/en-US/docs/Web/API/window.navigator.geolocation" title="/en-US/docs/Web/API/window.navigator.geolocation">navigator.geolocation</a> API, in must include the following in their manifest:</p>
<pre class="brush: html">
"permissions": {
  "geolocation":{ 
<code class="language-js"><span class="token string">    "description"</span><span class="token punctuation">:</span> <span class="token string">"Required for autocompletion in the share screen"</span><span class="token punctuation">,</span></code>  
  }
},
</pre>
<p>This allows the app to then prompt for the geolocation permission, in the same way that a web page normally would.&nbsp; For further detail on manifests, see <a href="/en-US/docs/Apps/Manifest" title="Apps/Manifest">App manifest</a>.</p>
<p>Note: Currently permissions usage intentions are not exposed to the user - see <a href="https://bugzilla.mozilla.org/show_bug.cgi?id=823385" title="https://bugzilla.mozilla.org/show_bug.cgi?id=823385">bug 823385</a>.</p>
<h3 id="Granting_Permissions">Granting Permissions</h3>
<p>When permissions are requested in the manifest, the permission is either set to 'allow' or 'prompt' depending on the permissions. Allow permissions are granted by virtue of being declared in the manifest with no further approval needed. For 'prompt' permissions, the user is prompted the first time the user access the related API, and has to make a choice prior to the API being granted. In general, Firefox OS only prompts users for permissions which have a privacy impact, and it is reasonable for the user to understand what they are being asked. For example, access to contacts is prompted, but access to make a raw TCP connection is implicitly granted since it is not reasonable for a user to understand the security implications of allowing this permissions. Use of 'allow' permissions is reviewed as part of Marketplace security review process to ensure users are protected.</p>
<h3 id="Revoking_Permissions">Revoking Permissions</h3>
<p>Users are allowed to change their mind about 'prompt' permissions at any time, and can revoke these permissions via the Firefox OS settings app. Allow permissions are not user configurable however.</p>
<h2 id="Web_App_Sandbox">Web App Sandbox</h2>
<h3 id="Data_stored_per_app_"><span class="mw-headline" id="Data_stored_per_app">Data stored per app </span></h3>
<p>Each application runs in as a separate sandbox, meaning that all data stored by an application is separate from all data stored by another application. This includes things like cookie data, localStorage data, indexedDB data and site permissions.</p>
<p>This means that if the user has two apps installed, App A and App B, these apps will have completely different set of cookies, different local data and different permission. This even applies if both of these apps open an &lt;iframe&gt; which point to the same origin. I.e. if both App A and App B open an &lt;iframe&gt; pointing to "<a class="external free" href="http://www.mozilla.org" rel="nofollow">http://www.mozilla.org</a>", they will both render the website, however the website will be fetched and rendered with different cookies in the two apps.</p>
<p>A result of this is that if the user logs in to, for example, facebook while using App A, this in no way affects App Bs ability to interact with the users account on facebook. The login cookie that facebook sets when the user logs in using App A is only available in App A. If App B open an &lt;iframe&gt; to facebook, the cookie wouldn't be there and so when App B opens facebook, it receives the facebook login page rather than the users account.</p>
<h3 id="Apps_can't_open_each_other_"><span class="mw-headline" id="Apps_can.27t_open_each_other">Apps can't open each other </span></h3>
<p>This means that apps can't open other apps by using iframes. If App A creates an iframe with the src set to the URL of App B, this won't actually open App B in the iframe. It will simply open the website located at that URL. It will not use any of App B's cookies and so it will behave no different than as if App B wasn't installed on the user's device.</p>
<p>This applies even for packaged apps (more about them below). If App A tries to open the packaged App B by using an &lt;iframe&gt; pointing to the app:// URL of App B, this will simply fail to load. If this results in a 404, or some other type of error is still to be determined, but it will definitely fail to load. And it will fail in the same way no matter if App B is installed on the user's device or not, as to make it impossible for App A to determine if App B is installed.</p>
<p>The same thing happens if the top-level frame of App A is navigated to a URL for App B. We always know for a given frame which app is opened in it, and so when attempting to load the App B URL in the App A frame, this will behave exactly like the two situations described above. I.e. in no way will App B's resources, like cookies or other local data, be used.</p>
<h3 id="Motivation"><span class="mw-headline" id="Motivation">Motivation</span></h3>
<p>There are both benefits and downsides to this approach. The downside is that if the user interacts with the same website through several apps, he/she will have to log in in every app. Likewise, if a website wants to store data locally, and the user interacts with this website in several apps, the data will end up getting duplicated in each app which could be a problem if it's a large amount of data.</p>
<p>The main benefit of this approach is that it's a more stable model. There is no way that several apps could interact with each other through a 3rd party website in unexpected ways such that installing an app causes another app to stop working. When an app is uninstalled there is no way that data for another app could be lost, or that another app will stop working due to functional dependence of the uninstalled app.</p>
<p>There are also large security benefits. A user can safely use his AwesomeSocial app to log in to facebook without having to worry that the SketchGame app can mount any types of attack for getting at the users facebook data by exploiting bugs or other shortcomings in the facebook website.</p>
<p>There are also good privacy benefits. The user can safely install the PoliticalPartyPlus app without having to worry that MegaCorpEmployeeApp will be able to detect that the app was installed or what data it has created.</p>
<h3 id="Sandboxed_Permissions"><span class="mw-headline" id="Sandboxed_Permissions">Sandboxed Permissions</span></h3>
<p>And just like website data is sandboxed per app, so are permission grants. If App A loads a page from <a class="external free" href="http://maps.google.com" rel="nofollow">http://maps.google.com</a> and that page requests to use geolocation and the user says "yes, and remember this decision for all times", this only means that <a class="external free" href="http://maps.google.com" rel="nofollow">http://maps.google.com</a> has access to geolocation within App A. If App B then opens <a class="external free" href="http://maps.google.com" rel="nofollow">http://maps.google.com</a>, that page won't have access to geolocation unless the user grants that permission again.</p>
<p>And just like in the normal browser, permissions are separated by origin. This means that if App A is granted permission to use Geolocation, this does not mean that all origins running in App A have the permission to use Geolocation. If App A opens an &lt;iframe&gt; to <a class="external free" href="http://maps.google.com" rel="nofollow">http://maps.google.com</a>, then <a class="external free" href="http://maps.google.com" rel="nofollow">http://maps.google.com</a> still has to ask the user for permission before geolocation access is granted.</p>
<h3 id="Browser_API_Sandbox">Browser API Sandbox</h3>
<p>To additionally secure applications that open a large set of URLs, such as browsers, we have added a "browserContent flag". The browserContent flag allows each app to have not one, but two sandboxes, one for the app itself, and one for any "web content" that it opens. For example:</p>
<p>Say that the MyBrowser app is loaded from the <a class="external free" href="https://mybrowser.com" rel="nofollow">https://mybrowser.com</a> domain. This is the domain where the scripts and resources are loaded within. The scripts and resources
  <i>
    belong</i>
  to this domain.</p>
<p>Now, if a page in this app creates an &lt;iframe mozbrowser&gt; a different sandbox is created and used for this &lt;iframe&gt;, which is different from the sandbox used by the app - i.e. if this iframe is navigated to <a class="external free" href="https://mybrowser.com" rel="nofollow">https://mybrowser.com</a>, it will result in different cookies being used inside the &lt;iframe mozbrowser&gt;. Likewise, the contents inside the &lt;iframe mozbrowser&gt; will see different IndexedDB and localStorage databases from the ones opened by the app.</p>
<p>This also applies if the MyBrowser app wants to create integration with, for example, google maps, to implement location-based browsing. If the app opens an &lt;iframe&gt; to <a class="external free" href="http://maps.google.com" rel="nofollow">http://maps.google.com</a>, that will open an iframe which will receive a set of cookies for the <a class="external free" href="http://maps.google.com" rel="nofollow">http://maps.google.com</a> website. If the user then navigates inside web content area, i.e. inside the &lt;iframe mozbrowser&gt;, to <a class="external free" href="http://maps.google.com" rel="nofollow">http://maps.google.com</a>, this will use different cookies and different permissions than the top level app.</p>
<p>Another example where this is useful is in a Yelp-like app. Yelp has the ability to visit a restaurant's website directly in the app. By using &lt;iframe mozbrowser&gt; to open the restaurant website, the Yelp app ensures that the restaurant website can't contain an &lt;iframe&gt; pointing back to Yelp's <b>app</b> (which points to <a class="external free" href="http://yelp.com" rel="nofollow">http://yelp.com</a>). If it does, the website will only receive the Yelp website, rather than the Yelp app. So there is no way that the restaurant website can mount an attack against the app since the contained Yelp website won't share any permissions or data with the Yelp app.</p>
<h2 id="App_Security_Summary">App Security Summary</h2>
<p>The table below summarizes the different types of FirefoxOS Apps, describes the format, installation and updates process for Open Web Apps running on Firefox OS.</p>
<table>
  <caption>
    Web App Types</caption>
  <thead>
    <tr>
      <th scope="col">Type</th>
      <th scope="col">Delivery</th>
      <th scope="col">Permission Model</th>
      <th scope="col">Installation</th>
      <th scope="col">Updates</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>Web</td>
      <td>Hosted or Packaged</td>
      <td>Less sensitive permissions which are not dangerous to expose to unvalidated web content</td>
      <td>Installed from anywhere</td>
      <td>Can be updated transparent to user or explicitly via a marketplace, depending on where the App was installed from, and the delivery mechanism.</td>
    </tr>
    <tr>
      <td>Privileged</td>
      <td>Packaged &amp; Signed</td>
      <td>Privileged APIs which require validation and authentication of the App</td>
      <td>Installed from a trusted marketplace</td>
      <td>Updated via a trusted marketplace, user prompted to approve download and installation of updates.</td>
    </tr>
    <tr>
      <td>Certified</td>
      <td>Packaged</td>
      <td>Powerful and dangerous APIs which are not available to Third-Party Apps.</td>
      <td>Pre-installed on the device</td>
      <td>Updated only as part of system level updates.</td>
    </tr>
  </tbody>
</table>
<p><strong>Note</strong>: For version 1.0 of Firefox OS, although web apps can be installed from any website/marketplace, privileged apps can only be installed from the Mozilla Marketplace, as support for multiple trusted marketplaces is not yet complete.</p>
Revert to this revision